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ABSTRACT 

It is consistent, relative to ZFC, that the minimum number of subsets of to 
generating a non-principal ultrafilter is strictly smaller than the dominating 
number. In fact, these two numbers can be any two prescribed regular 
cardinals. 

By an ultrafilter we mean a nonprincipal ultra filter on the set to of  natural 

numbers. A subfamily (a of  an ultrafilter ~//generates ~//if every setA E~//has a 
subset B Efa.  We shall be interested in the cardinal number 

u = min{ I fal: (a generates an ultrafilter} 

and, in particular, i n  constructing models where u is small. It is clear that 
R1 -<_ u -< 2 ~0, and Kunen [3, Ch. VIII, Ex. A10] showed that it is consistent for 

u to have the minimum possible value, R1, even when 2~0 > R~. 

To state the more precise results which will concern us here, we introduce 

two other cardinal numbers, the bounding number b, and the dominating 
number d. We say that a function f :  o9 --- 09 dominates another such function g 
if, for all but finitely many n ~ o9, f(n) > g(n). If  this inequality holds for all n, 

rather than just for all but finitely many, then we say that f totally dominates g. 
Then b is defined to be the minimum cardinality of  a family ~ of  functions 

such that no function dominates all functions in ~ ,  and d is defined to be the 

minimum cardinality of  a family ~ of  functions such that every function from 
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o9 to 09 is dominated by one in 9 .  (We could use total domination instead of 

domination in the definition of d but not in the definition of b.) It is well 
known and easy to see that b i:~ a regular uncountable cardinal and that the 

cofinality of d is at least b. Solomon [5] showed that b < u. 
In this paper, we prove the consistency of u < d, and in fact we show that 

there is considerable freedom in the choice of u and d. The consistency of 

u < d is also established by the models in [1], but the proofs there are 
considerably more complicated, and they do not allow any freedom in u and d 

- -  they have u = ~1 and d = R::. 
The construction presented here was found by the second author in 

September 1984, before the one presented in [ 1 ]. The first author's contribu- 

tion was to fill in some details ~Lnd to write the paper. 

THEOREM. Let v and ~ be uncountable regular cardinals in a model of  

ZFC + GCH. Then there is a countable chain condition forcing extension in 

which u = v and d = c~. 

Ifv > 6, then the desired forcing extension is obtained by first adding 6 Cohen 
reals and then v random reals. The desired properties of this extension follow 
routinely from the well-known facts that both Cohen and random forcing 

satisfy the countable chain condition (c.c.c.), that the ground model is a 

dominating family in any random extension but not in a Cohen extension, and 
that neither a random real a _c ,9 nor 09 - a includes any infinite set from the 
ground model. Thus, we shall assume from now on that v < 6. 

The notion of forcing used to ]~rove the theorem consists of  the adjunction of 
Cohen reals followed by a v-stage iteration of a variant of Mathias forcing 

relative to carefully chosen ultrafilters. We begin by summarizing the needed 
facts about this forcing, which was also used in the cited passage in [3]. 

For any ultrafilter ~//, Q(O//) is the notion of forcing consisting of pairs (a, A) 

where a is a finite subset ofog, A E~//, and all members of  a are smaller than all 

members ofA; (a, A) is an extension of(b, B) i fa  __. b, A __. B, and a - b c_ B. 

A generic subset G of Q(~//) is i:aterdefinable with the subset 

s(G):= U { a : ( a , A ) E G }  

of  o9, which we call the Mathias real defined by G. (This terminology is 
somewhat non-standard. Usually, "Mathias forcing" refers either to a forcing 
notion analogous to Q (a//) but with the second components of conditions being 
arbitrary infinite sets or to Q ( ~  for selective ultrafilters q/, both of which were 

considered in [4]. It is convenient to extend the terminology as we have done, 
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but  the reader should be warned that some properties of  the usual Mathias 

forcing do not carry over to this more general context. In particular, it will be 
essential for our proof that, for suitable ~ ,  our Mathias reals do not dominate 

all ground model reals.) It is easy to see that any condition (a, A) forces s(G) to 

include a and be included in a U A. (The ordering of Q(¢//) was designed to 

correspond to this "information about s in (a, A)".) It follows that s(G) is 

almost included (i.e. included modulo a finite set) in every A E qZ. 

We shall say that a finite set a c_ o9 is permitted by a condition (b, B) i fa  ___ b 

and a - b _ B. This is equivalent to saying that a is the first component of  a 

condition extending (b, B), as we can take the second component to be a 

suitable final segment of  B. 

We can now describe our forcing construction in somewhat more detail. 

Starting with the given model V of ZFC + GCH, we first adjoin a 5-sequence 

(ro : a < 5) of  mutually Cohen-generic functions r, : 09 ---- 09. Then we adjoin a 
v-sequence (s¢ : ~ < v) of reals by means of a v-step finite-support iteration. 

Each s¢ is a Mathias real over the previous model V[(r, : a < 5)][(s, : q < ~)], 

with respect to a certain ultrafilter q/¢ in this model, q/¢ will be constructed 

(carefully) later, but for the time being we impose on it only the following 

constraint. Suppose that the sequence (s, : r / <  ~) of  Mathias reals adjoined at 

earlier steps is almost decreasing. Then we require qz¢ to contain all these s,. 

(Clearly such a q/~ will exist.) It then follows that s¢ is almost included in s, for 

each r / <  ~, so our supposition remains true at ~ + 1. It trivially remains true at 

limit ordinals, so we find that the whole sequence ( s ¢ ; ~ < v )  is almost 

decreasing. 
Before continuing the proof, we introduce notation for the various inter- 

mediate models to which we shall refer. Define, for a < 5 and ~ < v, 

V(a, ~) = V[(rp :fl < a)l[(s, : q < ~)]. 

Thus, V(0, 0) is the ground model, V(O, 0) is the initial Cohen extension, and 

V(5, ~) is the model obtained after ~ stages in the Mathias forcing iteration. 

(For a < 5, we do not (yet) know that the s~'s can be obtained by iterated 

Mathias forcing over V(a, 0).) 

Because the iteration is done with finite supports and the c.c.c, holds for 

Cohen and Mathias forcing, it holds for the entire forcing [6]. Since v is regular, 

it follows that each subset of  o9 (or of  any ordinal < v) in the final extension 

V(~, v) is already in V(5, ~) for some ~ < v. If  A __ o9 and A E V(5, ~), then 

either A or o9 - A is in o//~ (as this is an ultrafilter in V(6, ~)) and therefore 

almost includes s t. Thus, the sets s¢ (~ < v), together with their intersections 
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with cofinite subsets of  09, generate an ultrafilter, namely U¢<v 0//¢, in V(5, v). 

Therefore, this model satisfies u < v. 

In fact, it satisfies u = v. To see this, we consider an arbitrary family f~ of  

fewer than v infinite subsets of  to :in V(5, v) and show that it fails to generate an 

ultrafilter. Since (# can be coded by a subset of  an ordinal < v, it lies in V(5, ~) 
for some ~ < v. Let 

X={ne to : l s¢  n n l  is even}. 

(We use the points of  s¢ to partition 09 into blocks; X is the union of  the 

even-numbered blocks.) We show that neither X nor its complement to - X 

includes any set from f~, or indeed any infinite set YE V(5, ~). Suppose the 

contrary. Let Y E V(5, ~) be an infinite subset of  to, and let (a, A) be a 
condition in Q(~//¢) forcing "Y _c__- X" or forcing "Y __. to - X" (over V(5, ~)). 
Let m be the smallest member of A, and let y be an element of  Ylarger than m. 

Then the two extensions (a, A - -y )  and (a, (A - y ) U  {m }) of  (a, A), force 

"s¢n  y = a"  and "s~ n y = a u {m}" respectively. So one of  them forces 

"y E X" and the other forces "y q~ X". This contradicts the assumption about 

(a, A), and this contradiction completes the proof that u = v in V(5, v). 

Using the regularity ofv and 5, the inequality v < 5, and the assumption that 

GCH holds in the ground model, one finds, by standard arguments for finite- 
support c.c.c, iterations, that 2 ~0 = ~ in V(5, v). Thus, trivially, this model 
satisfies d <- 5, and it remains on][y to prove the converse inequality. We intend 

to do this by showing that no family of  < 5 functions to ~ to can dominate all 
the Cohen reals r~. Carrying out this intention will require that we exercise 

considerable care in the choice of  the ultrafilters ~//~. For example, if we had the 

misfortune to choose a selective ultrafilter in V(5, 0) as ~//0, then the function 

enumerating So would dominate all the reals in V(5, 0), in particular all the r~'s. 

(More generally, Canjar [2] has shown that Mathias forcing with respect to q/ 

introduces a real dominating all ground model reals unless o//is a Po point with 

no rapid ultrafilter below it in the Rudin-Keisler ordering.) Our objective, 

therefore, is to choose the °//¢'s so as to avoid this and similar misfortunes. It is 

here that our construction devi~ttes from the one in [3], where the ultrafilters 

could be chosen arbitrarily. 

It will he convenient to normalize names (in forcing languages) for reals, i.e., 

for functions to ~ to, as follows, A n a m e f i s  to consist of  a sequence of  pairs 
( (W, , f , ) :n  Eto) where each l~V, is a maximal antichain in the notion of  

forcing andf ,  : IV, ~ to. The intended interpretation is that W, is a maximal 

antichain of  conditions deciding values for f (n)  and, for p ~ W,, f , ( p )  is the 
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value that p forcesf(n) to have. More formally, the denotation, with respect to 

a generic set G, of  such a sequence ((Wn, fn): n E 09) is the function sending 

each n to f , (p , ) ,  where p, is the unique condition in W, N G. It is well-known 

that every name for a real is forced to be equal to one of these normalized 

names, so we assume henceforth that all names of  reals are normalized. 

MAIN LEMMA. Let M be an inner model within a model M'  of  ZFC. Let °ll 

be an ultrafilter in M.  Suppose g : 09 ---, 09 is in M'  and is not dominated by any 

element o f  M.  Then there exists °11' such that: 
(1) °11' is an ultrafilter in M', and ql' DD_ ~11. 
(2) Every maximal antichain o f  Q(ql) in M is also a maximal antichain of  

a (~ ' )  in M'. 

(3) I f  f ~ M and f is a Q (ql)-name for a real, then I~-et~') " f  does not dominate 
g ~ .  

Before proving the lemma, we make same clarifying remarks. (1) implies 

that Q(o//) c Q(~').  Incompatible conditions in Q(q/) are also incompatible in 

Q(q/'); indeed, compatibility of  two conditions (a, A) and (b, B) simply means 

that some finite set c (which can even be taken to be a or b) is permitted by both 

of  them (for then (c, A • B) is a common extension), and this description is 
clearly absolute. Thus, antichains of Q(~//) remain antichains of  Q(q/'), and the 

import of  (2) is that maximality of  antichains is preserved. 

This preservation implies that, if G' is an M'-generic subset of Q(q/'), then 

G = G' f3 Q(q/) is an M-generic subset of Q(q/), for it meets every maximal 

antichain in M of Q (~). The Mathias real for q/' defined by G' and the Mathias 

real for ~ defined by G are the same, because if (a, A ) E G '  contributes a to 
s(G') then (a, ¢o - min(A))E G contributes the same a to s(G). 

From (1) and (2) it follows that any (normalized) Q(O//)-name in M for a real 

is also a Q(q/')-name for a real (indeed, for the same real, in the sense that its 
denotations with respect to the G and G' of  the preceding paragraph are the 

same). So (3) makes sense. (3) is the essential tool for ensuring that the Mathias 
reals s¢ that we adjoin do not introduce a small dominating family. 

It will be convenient for the proof to observe that (3) is equivalent to the 

statement (3') obtained by changing "dominate" to "totally dominate". The 

reason is that, if f were a counterexample to (3) then we could find a condition 

p E Q(0//,) and a k E to such that 

P I~- (Vn > k) f (n )  >=g(n). 

Then we could, in M, m o d i f y f s o  that its values at 0, 1 . . . . .  k - 1 are forced 
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(by every condition in Q(q/)) to agree with the corresponding values of g. 

Because of(2), every condition in Q(q/') forces this modified f to agree with g 

on arguments < k. But then 

P I~-(Vn)f(n) >=g(n) 

contrary to (3'). 

PROOF OF MAIN LEMMA. Consider, for the moment, an arbitrary ultrafilter 
a//, in M'  extending o//. We analyze what it means to say that o?/, violates (2) or 

(39. 
A violation of (2) is given by a maximal antichain L of Q(q/) in M and a 

condition (a,A)EQ(°ll ') incompatible with all elements of L. This incom- 

patibility means, as remarked above, 

No finite set is permitted by both (a, A ) and a member of L. 

We say that an A with this property is Jbrbidden by L and a. (Notice that the 
definition of "forbidden" doesn't mention ~//'.) 

A violation of (3') is given by a name f =  ((Wn,f,):n ~o9) in M and a 
condition (b, B )E  Q(q/') such that 

(b, B) I]- (V n) f(n) >= g(n). 

In view of the normalization off ,  we can express this property as 

(b, B) is incompatible with every p E IV, such that f ,  (p)  < g(n). 

As above, this can be formulated so as not to mention o//,. W say that a set B 

with this property is forbidden by l a n d  b. 
To prove the lemma, i.e., to avoid all violations of (2) and (30 (hence also 

(3)), it therefore suffices to extend J//to an ultrafilter in M'  that contains no 
forbidden sets of  either sort. By Zorn's lemma, it suffices to show that no set in 

~//(in M) is covered by finitely many forbidden sets (in M'). 
Suppose the contrary. Let ZE~// be covered by A~ . . . .  , A k ,  B 1 . . . .  , ak, 

where each h i is forbidden by Li (a maximal antichain of Q(d//) in M) and ai (a 

finite subset ofog) while each B, is forbidden by a name f =  ((IV,, f~) : n ~o9) 
and bi (a finite subset of  o9). We have assumed for notational simplicity that the 

numbers ofA's  and B's are equal (as we could repeat elements in either list) 
and that the same f is involved in forbidding all k of the B's (as we could 
replace different f ' s  by their maximum). We can also assume that the A's and 
B's are pairwise disjoint subsets of Z, as subsets of forbidden sets are 
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forbidden. Let no be the smallest number greater than all elements of  the ai's 
and ba's; we can assume Z c_ to - no. 

CLAIM. For every n E t o  there exists h (n)Eto  such that h ( n ) > n  and, 
whenever the interval Z n [n, h(n)) o f  Z is partitioned into 2k pieces, then at 
least one o f  the pieces P has both o f  the following properties. 

(i) For each i <= k, there is a (necessarily finite) set e c_ P such that ai U e is 
permitted by L~. 

(ii) For each i < k there is a (necessarily finite) set e c_ P such that bi u e is 
permitted by some p E I4", such that f ,  (p) < h (n). 

PROOF OF CLAIM. The claim is clearly absolute; we prove it in M. Suppose 

n were a counterexample to the claim. Then, by a compactness argument, we 

obtain a partition of  Z - n into 2k pieces, none of  which has the desired 
properties, no matter how large we make h(n) at the end of  (ii). Being an 

ultrafilter in M, o//must contain one of  the pieces; call that piece P. 

Consider any i < k. As Li is a maximal antichain in Q(~/), some p E L i  is 

compatible with (ai, P). A common extension has the form (ai U e, P') where e 

is a finite subset of  P and ag U e is permitted by p E L~. Thus, (i) holds for P. 

Consider again any i < k. As in the preceding paragraph, the condition 

(bi, P) E Q(O//) has an extension (bi w e, P') permitted by some p ~ I41,. Thus, 

(ii) holds for P provided h(n) is chosen to be larger than fn(p). 
This contradicts the fact that P does not have the desired properties, so the 

claim is proved. 

Fix an h as in the claim. Since we proved the claim in M, we can take h E M .  
(But, by absoluteness, the same h works in M'.) For any n >= no, partition 

Z n [n, h(n)) into the sets A~ n [n, h(n)) and B i n  [n, h(n)). One of the pieces 
P satisfies (i) and (ii). 

Suppose P = A i  N [n,h(n)). By (i), find e C_PC_Ai such that ai U e is 

permitted by some p ELi.  As (ai, A,) also permits a~ U e, this contradicts the 

fact that A~ is forbidden by L~ and a~. So P cannot be of  the form Ai n [n, h (n)). 
Therefore, P = Bi N [n, h(n)) for some i. By (ii), find e c P such that b, U e 

is permitted by some p E IV, such that f , ( p )  < h(n). But f a n d  bi forbid B~, so 

no p ~ IV, compatible with (bg, B~), in particular not the p in the preceding 

sentence, can have f , ( p ) <  g(n). Therefore, h(n) >= g(n). Since n can be any 

natural number => no, we have shown that g is dominated by the function 

h E M, contrary to hypothesis. This completes the proof of  the main lemma. [] 

We are now in a position to begin constructing the ultrafilters ~¢ in the 
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proof  of the theorem. Each ~¢~ will be the union of an increasing chain 
(°//(a, ~) : a < J), where ~(a ,  ~}, is an ultrafilter in the model V(a, ~). 

We begin by constructing J//o: we define ultrafilters a//(a, 0) in V(a, 0), for 
a < ~, by induction on a. These ultrafilters are required to satisfy 

(1) I f a  <f l ,  then J//(a, 0) _C ~'//(fl, 0), 
(2) I f a  < fl, then every maximal antichain of Q(~ll(a, 0)) in V(a, 0) is also a 

maximal antichain of  Q(°ll(fl, 0)) in v(fl, 0). 
(3) I f f ~  v(a, 0) is a Q(a//(a, 0))-name for a real, then [[-o~,(~+~,0))"fdoes 

not dominate r,". 
To begin the induction, let ~'(0, 0) be any ultrafilter in the ground model 
V = V(0, 0). (Here and in all that follows, arbitrary choices of ultrafilters 
should be made in a canonical way, using, for example, a fixed well-ordering of 
(a large enough piece of) the ground model and the well-orderings that it 
induces in forcing extensions.) At each successor stage a + 1, apply the main 
lemma with M = V(a, 0), M' = V(a + 1, 0), o//= J//(a, 0) and g = r,. The 
hypothesis of the lemma is satisfied because r~, being Cohen-generic 
over V(a, 0), is not dominaled by any real in V(a, 0). Let ~//(a + 1, 0) 
be the ~//' given by the lemma. At limit stages 2 of  uncountable cofinality, let 
°//(2, 0) = U~<x ~//(a, 0). This is an ultrafilter and satisfies (2) because every 
real in V(2, 0) is already in some earlier V(a, 0). It satisfies (1) obviously, and 
(3) is vacuous at limit stages. At limit stages 2 of countable cofinality, we must  
extend U~<x °//(a, 0) to an ultrafilter a//(2, 0) in V(2, 0) such that (2) holds 
when fl = 2. ((3) is again vacuous.) As in the proof  of the main lemma, we find 
that an ultrafilter extending U ,  <~ a//(a, 0) violates (2) if andonly  if it contains a 
set A that is forbidden by a maximal antichain L (of Q(~ll(a, 0)) in V(a, 0) for 
some a < 2 )  and some finite a _ o9. So, by Zorn's lemma, we need only check 
that no set in any ~//(a, 0) is covered by finitely many forbidden sets. But if 
ZE~Ii(a, 0) were covered by finitely many sets Ai forbidden by maximal 
antichains L~ of Q(°ll(a~, 0)) and ai c 09, then, letting y be the largest of  a and 
the a~'s, we would have Z E °//lly, 0) covered by the Aj which are forbidden by 
the maximal antichains L~ of  Q(O//(y, 0)) and a~. (We have used induction 
hypotheses (1) and (2) here.) But we saw in the proof  of the main lemma that 
this is absurd. (It would mean that o//(~, + 1, 0) doesn't  exist.) 

This completes the inductive definition of °g(a, 0) for a < ~. Set ~//0 = 
o//(~, 0). Let So be a Mathias real for o//0 over V(~, 0). Using one of the remarks 
that we made after the statement of  the main lemma, we see that, in virtue of  
(2), So is also a Mathias real for ~//(a, 0) over V(a, 0) for every a. It follows, by 
(3), that no real in V(a, 1) = V(a, 0)[s0] dominates ro. 
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This allows us to repeat the construction with 1 in place of 0. Let q/(0, 1) be 

any ultrafilter in V(0, 1)= V[s0] containing So. Extend it by using the main 
lemma at successor stages, taking unions at limit stages of uncountable 
cofinality, and extending unions so as to preserve maximality of antichains at 

limit stages of countable cofinality. This defines ~'(a, 1) for a < 5, with 
properties analogous to those of ~/(a, 0). Let ~ = ~//(5, 1), and let s~ be a 
Mathias real for ~//~ over V(5, 1). Thus, s~ is almost included in So, since 
s0E~//(0, 1) ___ o//l. Just as for So, we see that s~ is also a Mathias real over each 

V(a, 1), a < 5, with respect to the ultrafilter q/(a, 1). Thus, V(a, 2) is a two step 

iteration of Mathias forcing over V(a, 0). 
We can clearly repeat this process inductively, obtaining for all finite n 

and all a < 5 ultrafilters q/(a, n) and Mathias reals s, for q/, =q/(5,  n) 

over V(5, n). The properties (1), (2), and (3), with 0 changed to n, hold for 

each n. Hence, for each a < 5 and each n < co, V(a, n) is obtained from 
V(a, 0) by an n-step iteration of Mathias forcing with respect to the ultra- 

filters °//(a, i), i < n. 
Although we have described the construction so far as the successive 

adjunction of the reals s~ to models V(5, n) to produce V(5, n + 1), it is clear 
that we could have formulated all this as the definition of a forcing iteration 

T(5, n) in V(5, 0). Our description of ~11(5, n) in V(5, n) actually provides 
canonical T(5, n)-names for °//(5, n) and thus for Q(~1(5, n)). Using the latter 

name Q(5, n), we can define T(5, n + 1) as T(5, n) • Q(5, n). 
We could similarly define, for each a < 5, notions of  forcing T(a, n) for 

iteratively adding n Mathias reals to V(a, 0) using the ultrafilters q/(a, i) (or 
rather, when i > 0, canonical names for these ultrafilters). Our earlier obser- 
vation that the sequence of Mathias reals (st: i < n )  is not only T(6, n)- 
generic over V(5, 0) but also T(a, n)-generic over V(a, 0) for a < 5 amounts 
(since the generic sets were chosen arbitrarily) to the observation that every 
dense subset of T(a, n) in V(a, 0) is also predense (i.e., its closure under 
extensions is dense) in T(5, n). This preservation of density can, of course, also 

be verified by working directly with the notions of forcing rather than their 
generic subsets; one proceeds by induction on n, using property (2) of  the 

ultrafilters °//(a, 0) and the analogous property of the higher °//(a, n)'s. 

We let T(a, co), for each a _-< 5, be the direct limit of  the T(a, n)'s for n < 09; 

that is, we iterate the forcing with finite support. Our primary interest is, of 
course, in T(5, co), but we shall need to know that this forcing is appropriately 
related to the T(a, co)'s for a < 5. Specifically, since T(a, n) c_ T(O, n) for all 
finite n, we have T(a, 09) C_ T(5, co), and we want to know that the density 
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preservation property, noticed in the preceding paragraph for each n < co, 

continues to hold for co. 
To see this, let D be any dense subset of T(a, co) in V(a, 0), and let 

rE T(5, co). By definition of direct limit, we have rET(5,  n) for some n < (.o, 
and we fix such an n. Then, by well-known properties of finite support 

iterations, we can identify T(5, co) with T(5, n) .13. for a certain name R of a 

notion of forcing, and we can similarly identify T(a, co) with T(a, n) • R'  for a 
certain R'. Under these identifications, r corresponds to (r, 1), where 1 

denotes the weakest condition in R, and D becomes a set of pairs ( p, q ), where 

p E T(a, n) forces q E R'. The set of  first components p of these pairs, 

/J = {p E T(.~, n): For some q, (p,  q)ED},  

is dense in T(a,n). Indeed, for any p 'ET(a ,n) ,  the condition (p ' ,  1) in 

T(a, co) has an extension ( p, q) in the dense set D, and thenp is an extension 
of p'  in /~. By the preservation of density at level n, it follows that /J is 
predense in T(5, n). In particular, r is compatible with some p ~ / ) .  But then 
clearly ( r, 1 ) is compatible with some ( p, q) ~ D. This completes the proof 

that D is predense in T(0, co), 

We have thus shown that the sequence (si : i < co), obtained by a finite- 
support Mathias iteration over V(0, 0), is also obtained by a finite-support 

Mathias iteration over each V(a, 0). 
Having defined the forcing Q (o//,) and adjoined the corresponding Mathias- 

genetic reals s, for all n < co, we have obtained the models V(a, co). We wish to 
continue the construction, defining ~(a ,  co), °//o~, and so) analogously to what 
we did for finite n. In order to do this, specifically in order to apply the main 
lemma at successor stages, we need know the following fact. 

L~MMA. No real in V(a, co) dominates r~. 

PROOF. We pointed out, after introducing So, that no real in V(o~, 1) 

dominates r~; the same argument shows that, for any finite n, no real in V(a, n) 
dominates r~. But V(a, co) contains reals that are not in V(a, n) for any finite 

n, and we must prove that these don't dominate re either. We work in V(5, co). 
It suffices to prove that no real in V(a, co) totally dominates r,, because 

V(a, co) is closed under finite alterations of reals. 

For each fl < 5 and each ~ _-<i co, the submodel 

V(fl, ~) = V[(ry : 7 <fl)][(s. : n < ~)] 

is obtained from the ground model V by adjoining a genetic subset G(fl, ~) 
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of  a notion of forcing P(fl, ~). By our discussion above of  the connection 
between T(5, to) and T(a, to) for a < 5, this forcing P(fl, ~) can be described 
as first adjoining a r-sequence of mutually Cohen-generic reals ry and then 
adjoining, in a finite-support iteration, Mathias reals s, for certain (names of) 

ultrafilters q/(fl, n). 

For each k < to and each fl < 5, the forcing P(fl, to) can be viewed as a 

two-step iteration P(fl, k) • R.(fl, k), where the first step adds fl Cohen reals 
and the first k Mathias reals and the second step adds the rest of  the first to 

Mathias reals. Thus, V(fl, to) is obtained from V(fl, k) by adjoining a generic 
subset of  R(fl, k), the denotation of R.(fl, k) with respect to G(fl, k). A 
condition in R(fl, k) is an to-sequence in which the j th  term is forced, by the 
preceding terms, to belong to Q(ql(fl, k +j)), i.e. to be a pair (a, A) where a is 

a finite subset of to, A E q/(fl, k + j), and all elements of a are smaller than all 

elements of A; in addition, all but fnitely many of the terms are forced by the 

preceding terms to be (~, to), since the iteration is done with finite supports. It 

is clear from this description and the fact that q/(fl, ~) ___ q/(7, ~) for fl < y that 

every condition in R(fl, k) is also a condition in R(7, k) for every 7 >--r- 
Suppose now that the lemma failed. So there is a real in V(a, to) totally 

dominating r~. Fix a P(a, to)-namef, in the ground model, for such a real, and 
fix a condition p ~G(5,  to) forcing " f  totally dominates r~". Because the 
Mathias forcing in G(J, to) is iterated with finite suport, p is in G(5, k) for 
some k < to. Fix such a k. 

Let f '  be obtained by partially evaluating the P(a, co)-name fwi th  respect to 

G(a, k). That is, f '  is the (essentially unique) R(a, k)-name in V(a, k) such 
that its denotation, with respect to any V(a, k)-generic H c_ R(a, k), is the 

same as the denotation of f with respect to the V-generic set G(a, k) . H  in 
P(o~, k) .R (a ,  k) --- P(o~, to). 

We assume, as usual, that f '  is normalized, f '  = ((IV,, f,') : n ~ to). For each 
n E to, let g(n) = min{ f ' (q) : q ~ IV, }. Notice that g : to --* o9 has been defined 
in V(a, k). 

Consider any n, and fix a condition q E IV, _ R(a, k) such thatf ; (q)  = g(n). 
By our discussion of the notions of forcing R(fl, k) above, q is also a condition 

in RO,  k). If  His  any II(6, k)-generic subset of  R(~, k) such that q E H ,  and if 

H '  is its restriction to R (or, k), then, using subscripts to indicate denotations of 

names with respect to generic filters, we have 

fa~,u,).n(n) = f~¢,,,k).n,(n) sincefis  ~ P(a, to)-name 
= fb,(n) by definition o f f '  
= g(n) since q EH ' .  
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On the other hand, G(5, k) contains p, which forces f ro  totally dominate r~, so 

.fc(a,k).H(n) >= r~(n). 

Therefore, g(n) > r~(n). Since n was arbitrary, we have shown that r, is 

totally dominated by a real g in V(a, k). But, as we pointed out at the begin- 
ning of this proof, the construction of the ultrafilters 0//k for k < o9 ensures 
that no real in any V(a, k) dominates re. This contradiction completes the 

proof of the lemma. [] 

Given the lemma, we can now define ~//(a, 09)just as we defined ~//(a, k) for 
k < to. Indeed, the construction that we performed for finite k can be iterated 

transfinitely as long as we wish. At limit stages, we need a lemma analogous to 
the one just proved, but the proof carries over without difficulty. (Actually, it is 

needed only at limit stages of cofinality 09. At limit stages 2 of uncountable 

cofinality, all reals in V(a, 2) are in V(a, ~) with ~ < 2, so the analogous lemma 
becomes trivial.) We iterate the construction for v steps, obtaining a model 
V(5, v). The crucial property of the iteration, guaranteed by the lemma at limit 
stages and by clause (3) in our choice of ~//(fl, ~) at successor stages, is that for 
each ( _< v and a < 5, no real in V(a, ~) dominates r~. 

To complete the proof, we need the observation that conditions in P(6, v) 

are essentially countable objects; the following lemma is a weak form of this 
observation, sufficient for our purposes. 

LEMMA. Let ~ < v. 
(a) Each condition in e(5, ~.:) is in P(a, ~) for some a < 6. 
(b) Each P(5, ~)-name for a real is a P(a, ~)-name for some a < 6. 

PROOF. Because 5 is regular and uncountable and because P(5, v) satisfies 
the c.c.c., (a) implies (b). We prove (a) by induction on ~. For ~ = 0, it is 
immediate from the definition of Cohen forcing. For limit ~, it is also 

immediate because, in a finite support iteration, each condition in P(5, ~) is in 

some earlier P(5, q). Finally, it'~ = r /+  1 and p is a condition in P(5, ~), then p 

consists of a P(5, r/)-condition q followed by a name for a Q(°//,)-condition 

(a,A).  Induction hypothesis (a) implies that q EP(a~, rl), for some a~ < 5 .  

Induction hypothesis (b) implies that (a ,A)  is a P(a2, ~/)-name, for some 

a2 < 5. Then p ~P(a,  ~) for a = max{a ~ az}. [] 

It follows from part (b) of  the lemma and the regularity of 5 that any family 

of fewer than 5 reals in V(5, v) is included in V(a, v) for some a < 6. By the 
results immediately preceding the lemma, such a family fails to dominate the 
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corresponding Cohen real re. This proves that the dominating number in 
V(J, v) is at least ~, so the theorem is proved. 
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